Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Users Online: 180

 

Home  | About Us | Editors | Search | Ahead Of Print | Current Issue | Archives | Submit Article | Instructions | Subscribe | Contacts | Login 
     
ORIGINAL ARTICLE
Year : 2016  |  Volume : 6  |  Issue : 3  |  Page : 119-126

Bone marrow hematopoietic stem cells behavior with or without growth factors in trauma hemorrhagic shock


1 Department of Emergency Medicine, Jai Prakash Narayan Apex Trauma Centre, All Institute of Medical Sciences, New Delhi, India
2 Department of Stem Cell Facility, All Institute of Medical Sciences, New Delhi, India
3 Department of Biostatistics, All Institute of Medical Sciences, New Delhi, India
4 Department of Biochemistry, All Institute of Medical Sciences, New Delhi, India
5 Department of Haematology, All Institute of Medical Sciences, New Delhi, India
6 Department of Emergency Medicine, University of Florida, Florida, USA

Correspondence Address:
Sanjeev Bhoi
Department of Emergency Medicine, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi - 110 022
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2229-5151.190654

Rights and Permissions

Background: Hemorrhagic shock (HS) is the major leading cause of death after trauma. Up to 50% of early deaths are due to massive hemorrhage. Excessive release of pro-inflammatory cytokine and hypercatecholamine induces hematopoietic progenitor cells (HPCs) apoptosis, leading to multiorgan failure and death. However, still, result remains elusive for hematopoietic stem cells (HSCs) behavior in trauma HS (T/HS). Objectives: Therefore, our aim was to evaluate thein vitro HSCs behavior with or without recombinant human erythropoietin (rhEPO), recombinant human granulocyte macrophage-colony-stimulating factor (rhGM-CSF), recombinant human interleukin-3 (rhIL-3) alone, and combination with rhEPO + rhGM-CSF + rhIL-3 (EG3) in T/HS patients. Methodology: Bone marrow (BM) aspirates (n = 14) were collected from T/HS patients, those survived on day 3. BM cells were cultured for HPCs: Colony-forming unit-erythroid (CFU-E), burst-forming unit-erythroid (BFU-E), and colony-forming unit-granulocyte, monocyte/macrophage colonies growth. HPCs were counted with or without rhEPO, rhGM-CSF, rhIL-3 alone, and combination with EG3 in T/HS patients. Results: BM HSCs growth significantly suppressed in T/HS when compared with control group (P < 0.05). In addition, CFU-E and BFU-E colony growth were increased with additional growth factor (AGF) (rhEPO, rhGM-CSF, and rhIL-3) as compared to baseline (without AGF) (P < 0.05). Conclusion: Suppressed HPCs may be reactivated by addition of erythropoietin, GM-CSF, IL-3 alone and with combination in T/HS.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1992    
    Printed34    
    Emailed0    
    PDF Downloaded84    
    Comments [Add]    
    Cited by others 2    

Recommend this journal