Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Users Online: 1273

 

Home  | About Us | Editors | Search | Ahead Of Print | Current Issue | Archives | Submit Article | Instructions | Subscribe | Contacts | Login 
     


 
 
Table of Contents
CASE REPORT
Year : 2022  |  Volume : 12  |  Issue : 1  |  Page : 47-50

Aortoiliac thrombosis in COVID-19 patients: A case series


1 Department of Vascular Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
2 Department of Vascular Surgery, St. Luke's University Health Network, Bethlehem, PA, USA
3 Department of Radiology, St. Luke's University Health Network, Bethlehem, PA, USA

Date of Submission27-Mar-2021
Date of Acceptance17-Mar-2022
Date of Web Publication24-Mar-2022

Correspondence Address:
Dr. Sharvil U Sheth
3735 Nazareth Road, Suite 206, Easton, PA 18045
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijciis.ijciis_28_21

Rights and Permissions
   Abstract 


Severe acute respiratory syndrome coronavirus 2 infection has been associated with a prothrombotic state. Reports of arterial and venous thrombosis have emerged. Here, we report three cases of aortoiliac thrombosis presenting as mesenteric and lower extremity ischemia in coronavirus disease 2019 patients with no identifiable proximal embolic source or history of prothrombotic condition.

Keywords: Aortoiliac thrombosis, COVID-19, lower extremity ischemia, mesenteric ischemia


How to cite this article:
Ramakrishnan G, Xia T, Yannes M, Domer G, Sheth SU. Aortoiliac thrombosis in COVID-19 patients: A case series. Int J Crit Illn Inj Sci 2022;12:47-50

How to cite this URL:
Ramakrishnan G, Xia T, Yannes M, Domer G, Sheth SU. Aortoiliac thrombosis in COVID-19 patients: A case series. Int J Crit Illn Inj Sci [serial online] 2022 [cited 2022 Aug 11];12:47-50. Available from: https://www.ijciis.org/text.asp?2022/12/1/47/340611




   Introduction Top


Acute arterial thrombosis is a vascular emergency as a sudden decrease in end-organ perfusion can cause a threat to its viability. It most commonly occurs secondary to an embolic or thrombotic event in the setting of atherosclerotic disease or prior vascular intervention.[1] Here, we report three cases of acute aortoiliac occlusion presenting as mesenteric or lower extremity ischemia in coronavirus disease 2019 (COVID-19) patients with no identifiable proximal embolic source or history of prothrombotic condition.


   Case Reports Top


Case 1

A 53-year-old Caucasian female with a history of hyperlipidemia presented to the emergency department (ED) with 5 days of fever and dyspnea. Initial vitals revealed blood pressure (BP) of 136/67 mmHg, pulse of 91 bpm, respiratory rate (RR) of 26 bpm with SaO2 of 84% on room air, and temperature of 97.2°F. She was in acute hypoxic respiratory failure due to COVID-19 pneumonia and was placed on high-flow nasal cannula. On hospital day 7, the patient experienced severe left buttock claudication and left foot numbness. Examination revealed a cyanotic, pulseless left lower extremity with numbness and reduced motor function consistent with acute ischemia. The contralateral limb had normal pedal pulses. D-dimer levels had increased from 0.43 μg/mL to 3.14 μg/mL. Computed tomography angiography with runoff (CTA-R) showed a near occlusive thrombus in the left common iliac artery [Figure 1].
Figure 1: (a) Computed tomography angiography with runoff showing near occlusive thrombosis in the left common iliac artery (white arrow). (b) Intraoperative angiogram showing luminal irregularities in the anterior tibial artery (top arrow) and a filling defect in the peroneal artery (bottom arrow)

Click here to view


Therapeutic heparin was started. Thromboembolectomy of the left iliac artery and catheter-directed thrombolysis of the anterior tibial and peroneal arteries were performed [[Figure 1] and [Table 1]. Embolic workup did not reveal any proximal source. The patient was discharged on postoperative day (POD) 8. On POD 25, she reported resolution of claudication and had intact pedal pulses. She is currently maintained on therapeutic apixaban.
Table 1: Summary of patient presentations, significant laboratories, imaging findings, and intervention (s)

Click here to view


Case 2

A 92-year-old Hispanic male with a history of hyperlipidemia presented to the ED in an obtunded state after 14 days of fever and lethargy. Initial vitals revealed BP of 155/91 mmHg, pulse of 117 bpm, RR of 30 bpm with SaO2 of 98% on room air, and temperature of 98.9°F. Examination was consistent with advanced right lower extremity ischemia with motor and sensory loss. The contralateral limb had normal pedal pulses. He was positive for COVID-19. There was lactic acidosis (3.9 mmol/L) and an elevated D-dimer (>10 μg/mL). CTA-R showed an occlusive thrombus originating at the right common iliac artery with no distal reconstitution [Figure 2]. Based on patient age and presentation, surgical intervention was withheld [Table 1]. Due to the patient's poor response to medical management, he was placed on comfort measures and expired on hospital day 1.
Figure 2: (a) Computed tomography angiography with runoff showing complete thrombosis of the right iliac and (b) right femoral arteries. Dashed arrows show thrombosed vessels while white arrows show patent vessels

Click here to view


Case 3

A 63-year-old Caucasian female with a history of coronary artery disease, chronic kidney disease, and multiple prior abdominal surgeries was hospitalized for 10 days with COVID-19 pneumonia. Three days after discharge, she returned with 2 h of severe epigastric pain. Initial vitals revealed BP of 143/83 mmHg, pulse of 111 bpm, RR of 26 bpm with SaO2 of 90% on room air, and temperature of 98.1°F. Examination revealed a soft, nontender abdomen. Laboratory workup revealed lactic acidosis (2.5 mmol/L) and leukocytosis (22 × 103/μL). CTA showed an eccentric thrombus in the infrarenal aorta with filling defects in the superior mesenteric artery (SMA) confirming acute mesenteric ischemia [Figure 3].
Figure 3: (a) Computed tomography angiography showing eccentric thrombus at the level of the infrarenal aorta (red arrow). (b) Filling defect in superior mesenteric artery branch (white arrow). (c) Angiogram showing superior mesenteric artery branch occlusion (white arrow)

Click here to view


After starting therapeutic heparin, she underwent percutaneous mechanical thrombectomy via left radial access to restore intestinal perfusion [Figure 3] and [Table 1]. As her symptoms improved, her diet was advanced. However, on POD 8, she had recurrent abdominal pain. CTA revealed a patent SMA, but there was jejunal pneumatosis requiring urgent exploratory laparotomy and resection of necrotic jejunum. Since there was no evidence of distal embolization on completion angiography, bowel necrosis was likely due to the initial ischemic insult and its progression. Embolic workup did not reveal any proximal source. On postintervention day 21, she was tolerating a regular diet with normal bowel function and was discharged on therapeutic apixaban.


   Discussion Top


The cases above may have arisen spontaneously or secondary to COVID-19 infection. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a propensity to create a prothrombotic state in infected hosts.[2] The virus accomplishes this function via direct and indirect mechanisms. In the direct pathway, it enters cells by binding to angiotensin-converting enzyme II receptors and triggering inflammatory cascades. This leads to tissue factor upregulation and activation of the coagulation cascade.[3] Tissue-engineered arterial models have supported this mechanism.[2] Indirect mechanisms involve the systemic effects of the virus and its ability to induce proinflammatory cytokines which activate endothelial and mononuclear cells to promote platelet activation and coagulation.[4]

In our cohort, all patients had macrovascular thrombosis involving the aortoiliac segment. The index patients had no history of peripheral arterial disease, known prothrombotic condition, or any identifiable proximal embolic source. This suggests the possibility of native arterial thrombosis occurring secondary to SARS CoV-2's propensity to promote endotheliopathy and platelet dysfunction.[4] At present, clinical data on acute arterial ischemia secondary to COVID-19 are limited. Vulliamy et al. reported two cases of mesenteric and aortoiliac occlusion in patients with minimal risk for embolic disease and negligible calcific burden.[5] Bellosta et al. published a descriptive cohort study of twenty Italian patients with acute arterial ischemia. Their institutional experiences suggest a virus-related hypercoagulability as the likely etiology.[6]

There are some data supporting the significance of D-dimer elevation as a predictor of venous thromboembolism (VTE) and overall disease severity.[7],[8] In a retrospective review, patients with fibrinolysis shutdown, as defined by elevated D-dimer and low LY30 on thromboelastography, had a significantly elevated risk of VTE.[8] Emerging guidelines recommend prophylactic dose anticoagulation for all hospitalized COVID-19 patients in the absence of contraindications.[7],[9],[10] However, the role of therapeutic anticoagulation has yet to be established.

As COVID-19 cases rise globally, an increase in the number of patients presenting with arterial thrombosis and end-organ ischemia is expected. Because COVID-19 patients are sequestered under strict isolation protocols, it is important to remain vigilant for this complication that requires prompt intervention. Most COVID-19 patients with arterial thrombosis may be successfully treated with anticoagulation and urgent intervention. The duration of anticoagulation therapy to prevent re-thrombosis remains to be determined.

Consent

Written consent was obtained in cases 1 and 3. Surrogate written consent was obtained from the patient's family in case 2.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form, the patients (cases 1 and 3) and patient's guardian (case 2) have given their consent for the images and other clinical information to be reported in the journal. The patients (cases 1 and 3) and patient's guardian (case 2) understand that the names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Research quality and ethics statement

This case series did not require approval by the Institutional Review Board/Ethics Committee. The authors followed applicable EQUATOR (http://www.equator-network.org/) network guidelines, specifically the CARE guideline, during the conduct of this research project.

Acknowledgment

Dr. Michael Ringold performed CTA image processing.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Rutherford RB, Baker JD, Ernst C, Johnston KW, Porter JM, Ahn S, et al. Recommended standards for reports dealing with lower extremity ischemia: Revised version. J Vasc Surg 1997;26:517-38.  Back to cited text no. 1
    
2.
Varga S, Flammer A, Steiger S, Haberecker M, Andermatt R, Zinkernagel A, et al. Endothelial cell infection and endothelitis in COVID-19. Lancet 2020;495:1417-18.  Back to cited text no. 2
    
3.
Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020;181:905-13.e7.  Back to cited text no. 3
    
4.
Verhoef PA, Kannan S, Sturgill JL, Tucker EW, Morris PE, Miller AC, et al. Severe acute respiratory syndrome-associated coronavirus 2 infection and organ dysfunction in the ICU: Opportunities for translational research. Crit Care Explor 2021;3:e0374.  Back to cited text no. 4
    
5.
Vulliamy P, Jacob S, Davenport RA. Acute aorto-iliac and mesenteric arterial thromboses as presenting features of COVID-19. Br J Haematol 2020;189:1053-4.  Back to cited text no. 5
    
6.
Bellosta R, Luzzani L, Natalini G, Pegorer MA, Attisani L, Cossu LG, et al. Acute limb ischemia in patients with COVID-19 pneumonia. J Vasc Surg 2020;72:1864-72.  Back to cited text no. 6
    
7.
Kollias A, Kyriakoulis K, Dimakakos E, Poulakou G, Stergiou GS, Syrigos K, et al. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: Emerging evidence and call for action. Br J Haematol 2020;189:846-47.  Back to cited text no. 7
    
8.
Wright FL, Vogler TO, Moore EE, Moore HB, Wohlauer MV, Urban S, et al. Fibrinolysis shutdown correlates to thromboembolic events in severe COVID-19 infection. J Am Coll Surg 2020;231:193-203.  Back to cited text no. 8
    
9.
Klok FA, Kruip MJ, van der Meer NJ, Arbous MS, Gommers DA, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020;191:145-7.  Back to cited text no. 9
    
10.
Bikdeli B, Madhavan M, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol 2020;75:2950-73.  Back to cited text no. 10
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Case Reports
   Discussion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed362    
    Printed14    
    Emailed0    
    PDF Downloaded14    
    Comments [Add]    

Recommend this journal